arrakis-python
Arrakis Python client library
Resources
Installation
With pip
:
pip install arrakis
With conda
:
conda install -c conda-forge arrakis-python
Features
- Query live and historical timeseries data
- Describe channel metadata
- Search for channels matching a set of conditions
- Publish timeseries data
Quickstart
Fetch timeseries
import arrakis
start = 1187000000
end = 1187001000
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
block = arrakis.fetch(channels, start, end)
for channel, series in block.items():
print(channel, series)
where block
is a arrakis.block.SeriesBlock and series
is a
arrakis.block.Series.
Stream timeseries
1. Live data
import arrakis
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
for block in arrakis.stream(channels):
print(block)
2. Historical data
import arrakis
start = 1187000000
end = 1187001000
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
for block in arrakis.stream(channels, start, end):
print(block)
Describe metadata
import arrakis
channels = [
"H1:CAL-DELTAL_EXTERNAL_DQ",
"H1:LSC-POP_A_LF_OUT_DQ",
]
metadata = arrakis.describe(channels)
where metadata
is a dictionary mapping channel names to
arrakis.channel.Channel.
Find channels
import arrakis
for channel in arrakis.find("H1:LSC-*"):
print(channel)
where channel
is a arrakis.channel.Channel.
Count channels
import arrakis
count = arrakis.count("H1:LSC-*")
Publish timeseries
from arrakis import Channel, Publisher, SeriesBlock, Time
import numpy
# admin-assigned ID
publisher_id = "my_producer"
# define channel metadata
metadata = {
"H1:FKE-TEST_CHANNEL1": Channel(
"H1:FKE-TEST_CHANNEL1",
data_type=numpy.float64,
sample_rate=64,
),
"H1:FKE-TEST_CHANNEL2": Channel(
"H1:FKE-TEST_CHANNEL2",
data_type=numpy.int32,
sample_rate=32,
),
}
publisher = Publisher(publisher_id)
publisher.register()
with publisher:
# create block to publish
series = {
"H1:FKE-TEST_CHANNEL1": numpy.array([0.1, 0.2, 0.3, 0.4], dtype=numpy.float64),
"H1:FKE-TEST_CHANNEL2": numpy.array([1, 2], dtype=numpy.int32),
}
block = SeriesBlock(
1234567890 * Time.SECONDS, # time in nanoseconds for first sample
series, # the data to publish
metadata, # the channel metadata
)
# publish timeseries
publisher.publish(block)