SamplesDict class
pesummary’s gw package provides extra functionality to the core pesummary.utils.samples_dict.SamplesDict class. For details about initializing the SamplesDict class and using the core SamplesDict properties, see the core SamplesDict docs.
Parameter descriptions
pesummary provides a set of parameter descriptions for most gravitational wave specific parameters (see here). You can access these descriptions directly from the SamplesDict class,
>>> from pesummary.utils.samples_dict import SamplesDict
>>> samplesdict = SamplesDict.from_file("path_to_file.hdf5")
>>> parameters = samplesdict.keys()
>>> print(parameters[0])
'mass_1'
>>> print(parameters[0].description)
the detector-frame (redshifted) mass of the heavier object
Source classifications
pesummary provides wrappers for the PEPredicates and `ligo.em-bright <https://pypi.org/project/ligo.em-bright/`_ packages to calculate classification probabilities from the samples. We may calculate the classification probabilities with,
>>> from pesummary.utils.samples_dict import SamplesDict
>>> samplesdict = SamplesDict.from_file("path_to_file.hdf5")
>>> samplesdict.classification()
{'default': {'BNS': 0.0, 'NSBH': 0.0, 'BBH': 1.0, 'MassGap': 0.0, 'HasNS': 0.0, 'HasRemnant': 1.0}, 'population': {'BNS': 0.0, 'NSBH': 0.0, 'BBH': 1.0, 'MassGap': 0.0, 'HasNS': 0.0, 'HasRemnant': 1.0}}
Where the default classification is generated by using the samples directly, and the population classification is generated by reweighing the samples to a population based prior. For more details see the pesummary.gw.classification module.