Array class

pesummary handles a set of marginalized posterior samples through a custom Array class. This Array class is inherited from the numpy.ndarray class and includes extra properties to make it easier to return key information.

Initializing the Array class

The Array class is initalized with the following:

>>> from pesummary.utils.array import Array
>>> samples = [1,2,3,4,5,6]
>>> array = Array(samples)

Using the Array properties

Below we show some of the useful properties of the Array class. For full details see the doc string,

>>> array.minimum
Array(1)
>>> array.maximum
Array(6)
>>> array.average(type="mean")
Array(3.5)
>>> array.average(type="median")
Array(3.5)
>>> array.key_data
{'mean': 3.5, 'median': 3.5, 'std': 1.707825127659933, 'maxL': None, 'maxP': None, '5th percentile': 1.25, '95th percentile': 5.75}

Using the Array functions

Below we show some of the useful functions of the Array class,

>>> array.confidence_interval(percentile=[5, 95])
array([1.25, 5.75])
>>> array.confidence_interval(percentile=[45, 55])
array([3.25, 3.75])
>>>