|
| def | lalinference.bayespputils.get_end (siminspiral) |
| |
| def | lalinference.bayespputils.replace_column (table, old, new) |
| | Workaround for missing astropy.table.Table.replace_column method, which was added in Astropy 1.1. More...
|
| |
| def | lalinference.bayespputils.as_array (table) |
| | Workaround for missing astropy.table.Table.as_array method, which was added in Astropy 1.0. More...
|
| |
| def | lalinference.bayespputils.det_end_time (ifo_prefix, inj) |
| |
| def | lalinference.bayespputils.get_prior (name) |
| |
| def | lalinference.bayespputils.plot_label (param) |
| | A lookup table for plot labels. More...
|
| |
| def | lalinference.bayespputils.skyArea (bounds) |
| | functions used in 2stage kdtree More...
|
| |
| def | lalinference.bayespputils.random_split (items, fraction) |
| |
| def | lalinference.bayespputils.addSample (tree, coordinates) |
| |
| def | lalinference.bayespputils.kdtree_bin_sky_volume (posterior, confidence_levels) |
| |
| def | lalinference.bayespputils.kdtree_bin_sky_area (posterior, confidence_levels, samples_per_bin=10) |
| | takes samples and applies a KDTree to them to return confidence levels returns confidence_intervals - dictionary of user_provided_CL:calculated_area b - ordered list of KD leaves injInfo - if injection values provided then returns [Bounds_of_inj_kd_leaf ,number_samples_in_box, weight_of_box,injection_CL ,injection_CL_area] Not quite sure that the repeated samples case is fixed, posibility of infinite loop. More...
|
| |
| def | lalinference.bayespputils.kdtree_bin (posterior, coord_names, confidence_levels, initial_boundingbox=None, samples_per_bin=10) |
| | takes samples and applies a KDTree to them to return confidence levels returns confidence_intervals - dictionary of user_provided_CL:calculated_volume b - ordered list of KD leaves initial_boundingbox - list of lists [upperleft_coords,lowerright_coords] injInfo - if injection values provided then returns [Bounds_of_inj_kd_leaf ,number_samples_in_box, weight_of_box,injection_CL ,injection_CL_volume] Not quite sure that the repeated samples case is fixed, posibility of infinite loop. More...
|
| |
| def | lalinference.bayespputils.kdtree_bin2Step (posterior, coord_names, confidence_levels, initial_boundingbox=None, samples_per_bin=10, injCoords=None, alternate=False, fraction=0.5, skyCoords=False) |
| | input: posterior class instance, list of confidence levels, optional choice of inital parameter space, samples per box in kdtree note initial_boundingbox is [[lowerbound of each param][upper bound of each param]], if not specified will just take limits of samples fraction is proportion of samples used for making the tree structure. More...
|
| |
| def | lalinference.bayespputils.greedy_bin_two_param (posterior, greedy2Params, confidence_levels) |
| | Determine the 2-parameter Bayesian Confidence Intervals using a greedy binning algorithm. More...
|
| |
| def | lalinference.bayespputils.pol2cart (long, lat) |
| | Utility function to convert longitude,latitude on a unit sphere to cartesian co-ordinates. More...
|
| |
| def | lalinference.bayespputils.sph2cart (r, theta, phi) |
| | Utiltiy function to convert r,theta,phi to cartesian co-ordinates. More...
|
| |
| def | lalinference.bayespputils.cart2sph (x, y, z) |
| | Utility function to convert cartesian coords to r,theta,phi. More...
|
| |
| def | lalinference.bayespputils.plot_sky_map (hpmap, outdir, inj=None, nest=True) |
| | Plots a sky map from a healpix map, optionally including an injected position. More...
|
| |
| def | lalinference.bayespputils.skymap_confidence_areas (hpmap, cls) |
| | Returns the area (in square degrees) for each confidence level with a greedy binning algorithm for the given healpix map. More...
|
| |
| def | lalinference.bayespputils.skymap_inj_pvalue (hpmap, inj, nest=True) |
| | Returns the greedy p-value estimate for the given injection. More...
|
| |
| def | lalinference.bayespputils.mc2ms (mc, eta) |
| | Utility function for converting mchirp,eta to component masses. More...
|
| |
| def | lalinference.bayespputils.q2ms (mc, q) |
| | Utility function for converting mchirp,q to component masses. More...
|
| |
| def | lalinference.bayespputils.q2eta (q) |
| | Utility function for converting q to eta. More...
|
| |
| def | lalinference.bayespputils.mc2q (mc, eta) |
| | Utility function for converting mchirp,eta to new mass ratio q (m2/m1). More...
|
| |
| def | lalinference.bayespputils.ang_dist (long1, lat1, long2, lat2) |
| | Find the angular separation of (long1,lat1) and (long2,lat2), which are specified in radians. More...
|
| |
| def | lalinference.bayespputils.array_dot (vec1, vec2) |
| | Calculate dot products between vectors in rows of numpy arrays. More...
|
| |
| def | lalinference.bayespputils.array_ang_sep (vec1, vec2) |
| | Find angles between vectors in rows of numpy arrays. More...
|
| |
| def | lalinference.bayespputils.array_polar_ang (vec) |
| | Find polar angles of vectors in rows of a numpy array. More...
|
| |
| def | lalinference.bayespputils.rotation_matrix (angle, direction) |
| | Compute general rotation matrices for a given angles and direction vectors. More...
|
| |
| def | lalinference.bayespputils.ROTATEZ (angle, vx, vy, vz) |
| |
| def | lalinference.bayespputils.ROTATEY (angle, vx, vy, vz) |
| |
| def | lalinference.bayespputils.orbital_momentum (fref, m1, m2, inclination) |
| | Calculate orbital angular momentum vector. More...
|
| |
| def | lalinference.bayespputils.orbital_momentum_mag (fref, m1, m2, eta) |
| |
| def | lalinference.bayespputils.component_momentum (m, a, theta, phi) |
| | Calculate BH angular momentum vector. More...
|
| |
| def | lalinference.bayespputils.symm_tidal_params (lambda1, lambda2, q) |
| | Calculate best tidal parameters [Eqs. More...
|
| |
| def | lalinference.bayespputils.spin_angles (fref, mc, eta, incl, a1, theta1, phi1, a2=None, theta2=None, phi2=None) |
| | Calculate physical spin angles. More...
|
| |
| def | lalinference.bayespputils.chi_precessing (m1, a1, tilt1, m2, a2, tilt2) |
| | Calculate the magnitude of the effective precessing spin following convention from Phys. More...
|
| |
| def | lalinference.bayespputils.calculate_redshift (distance, h=0.6790, om=0.3065, ol=0.6935, w0=-1.0) |
| | Calculate the redshift from the luminosity distance measurement using the Cosmology Calculator provided in LAL. More...
|
| |
| def | lalinference.bayespputils.source_mass (mass, redshift) |
| | Calculate source mass parameter for mass m as: m_source = m / (1.0 + z) For a parameter m. More...
|
| |
| def | lalinference.bayespputils.integrand_distance (redshift, nonGR_alpha) |
| | Following functions added for testing Lorentz violations. More...
|
| |
| def | lalinference.bayespputils.DistanceMeasure (redshift, nonGR_alpha) |
| | D_alpha = ((1+z)^(1-alpha))/H_0 * D_alpha # from eq.15 of arxiv 1110.2720 D_alpha calculated from integrand in above function. More...
|
| |
| def | lalinference.bayespputils.lambda_a (redshift, nonGR_alpha, lambda_eff, distance) |
| | Converting from the effective wavelength-like parameter to lambda_A: lambda_A = lambda_{eff}*(D_alpha/D_L)^(1/(2-alpha))*(1/(1+z)^((1-alpha)/(2-alpha))) More...
|
| |
| def | lalinference.bayespputils.amplitudeMeasure (redshift, nonGR_alpha, lambda_eff, distance) |
| | Converting to Lorentz violating parameter "A" in dispersion relation from lambda_A: A = (lambda_A/h)^(alpha-2) # eqn. More...
|
| |
| def | lalinference.bayespputils.physical2radiationFrame (theta_jn, phi_jl, tilt1, tilt2, phi12, a1, a2, m1, m2, fref, phiref) |
| | changes for testing Lorentz violations made till here More...
|
| |
| def | lalinference.bayespputils.plot_one_param_pdf_kde (fig, onedpos) |
| |
| def | lalinference.bayespputils.plot_one_param_pdf (posterior, plot1DParams, analyticPDF=None, analyticCDF=None, plotkde=False) |
| | Plots a 1D histogram and (gaussian) kernel density estimate of the distribution of posterior samples for a given parameter. More...
|
| |
| def | lalinference.bayespputils.getRAString (radians, accuracy='auto') |
| |
| def | lalinference.bayespputils.getDecString (radians, accuracy='auto') |
| |
| def | lalinference.bayespputils.plot_corner (posterior, levels, parnames=None) |
| | Make a corner plot using the triangle module (See http://github.com/dfm/corner.py) More...
|
| |
| def | lalinference.bayespputils.plot_two_param_kde_greedy_levels (posteriors_by_name, plot2DkdeParams, levels, colors_by_name, line_styles=__default_line_styles, figsize=(4, 3), dpi=250, figposition=[0.2, 0.2, 0.48, 0.75], legend='right', hatches_by_name=None, Npixels=50) |
| | Plots a 2D kernel density estimate of the 2-parameter marginal posterior. More...
|
| |
| def | lalinference.bayespputils.plot_two_param_kde (posterior, plot2DkdeParams) |
| | Plots a 2D kernel density estimate of the 2-parameter marginal posterior. More...
|
| |
| def | lalinference.bayespputils.get_inj_by_time (injections, time) |
| | Filter injections to find the injection with end time given by time +/- 0.1s. More...
|
| |
| def | lalinference.bayespputils.histogram2D (posterior, greedy2Params, confidence_levels) |
| | Returns a 2D histogram and edges for the two parameters passed in greedy2Params, plus the actual discrete confidence levels imposed by the finite number of samples. More...
|
| |
| def | lalinference.bayespputils.plot_two_param_greedy_bins_contourf (posteriors_by_name, greedy2Params, confidence_levels, colors_by_name, figsize=(7, 6), dpi=120, figposition=[0.3, 0.3, 0.5, 0.5], legend='right', hatches_by_name=None) |
| |
| def | lalinference.bayespputils.plot_two_param_greedy_bins_hist (posterior, greedy2Params, confidence_levels) |
| | Histograms of the ranked pixels produced by the 2-parameter greedy binning algorithm colured by their confidence level. More...
|
| |
| def | lalinference.bayespputils.greedy_bin_one_param (posterior, greedy1Param, confidence_levels) |
| | Determine the 1-parameter Bayesian Confidence Interval using a greedy binning algorithm. More...
|
| |
| def | lalinference.bayespputils.contigious_interval_one_param (posterior, contInt1Params, confidence_levels) |
| | Calculates the smallest contigious 1-parameter confidence interval for a set of given confidence levels. More...
|
| |
| def | lalinference.bayespputils.autocorrelation (series) |
| | Returns an estimate of the autocorrelation function of a given series. More...
|
| |
| def | lalinference.bayespputils.autocorrelation_length_estimate (series, acf=None, M=5, K=2) |
| | Attempts to find a self-consistent estimate of the autocorrelation length of a given series. More...
|
| |
| def | lalinference.bayespputils.effectiveSampleSize (samples, Nskip=1) |
| | Compute the effective sample size, calculating the ACL using only the second half of the samples to avoid ACL overestimation due to chains equilibrating after adaptation. More...
|
| |
| def | lalinference.bayespputils.readCoincXML (xml_file, trignum) |
| |
| def | lalinference.bayespputils.find_ndownsample (samples, nDownsample) |
| | Given a list of files, threshold value, and a desired number of outputs posterior samples, return the skip number to achieve the desired number of posterior samples. More...
|
| |
| def | lalinference.bayespputils.parse_converge_output_section (fo) |
| |
| def | lalinference.bayespputils.vo_nest2pos (nsresource, Nlive=None) |
| | Parse a VO Table RESOURCE containing nested sampling output and return a VOTable TABLE element with posterior samples in it. More...
|
| |
| def | lalinference.bayespputils.confidence_interval_uncertainty (cl, cl_bounds, posteriors) |
| | Returns a tuple (relative_change, fractional_uncertainty, percentile_uncertainty) giving the uncertainty in confidence intervals from multiple posteriors. More...
|
| |
| def | lalinference.bayespputils.plot_waveform (pos=None, siminspiral=None, event=0, path=None, ifos=['H1', 'L1', 'V1']) |
| |
| def | lalinference.bayespputils.plot_psd (psd_files, outpath=None, f_min=30.) |
| |
| def | lalinference.bayespputils.cred_interval (x, cl=.9, lower=True) |
| | Return location of lower or upper confidence levels Args: x: List of samples. More...
|
| |
| def | lalinference.bayespputils.spline_angle_xform (delta_psi) |
| | Returns the angle in degrees corresponding to the spline calibration parameters delta_psi. More...
|
| |
| def | lalinference.bayespputils.plot_spline_pos (logf, ys, nf=100, level=0.9, color='k', label=None, xform=None) |
| | Plot calibration posterior estimates for a spline model in log space. More...
|
| |
| def | lalinference.bayespputils.plot_calibration_pos (pos, level=.9, outpath=None) |
| |
| def | lalinference.bayespputils.plot_burst_waveform (pos=None, simburst=None, event=0, path=None, ifos=['H1', 'L1', 'V1']) |
| |
| def | lalinference.bayespputils.make_1d_table (html, legend, label, pos, pars, noacf, GreedyRes, onepdfdir, sampsdir, savepdfs, greedy, analyticLikelihood, nDownsample) |
| |
|
| | lalinference.bayespputils.hostname_short = socket.gethostbyaddr(socket.gethostname())[0].split('.',1)[1] |
| |
| list | lalinference.bayespputils.logParams = ['logl','loglh1','loglh2','logll1','loglv1','deltalogl','deltaloglh1','deltalogll1','deltaloglv1','logw','logprior','logpost','nulllogl','chain_log_evidence','chain_delta_log_evidence','chain_log_noise_evidence','chain_log_bayes_factor'] |
| |
| list | lalinference.bayespputils.relativePhaseParams = [ a+b+'_relative_phase' for a,b in combinations(['h1','l1','v1'],2)] |
| |
| list | lalinference.bayespputils.snrParams = ['snr','optimal_snr','matched_filter_snr','coherence'] + ['%s_optimal_snr'%(i) for i in ['h1','l1','v1']] + ['%s_cplx_snr_amp'%(i) for i in ['h1','l1','v1']] + ['%s_cplx_snr_arg'%(i) for i in ['h1', 'l1', 'v1']] + relativePhaseParams |
| |
| list | lalinference.bayespputils.calAmpParams = ['calamp_%s'%(ifo) for ifo in ['h1','l1','v1']] |
| |
| list | lalinference.bayespputils.calPhaseParams = ['calpha_%s'%(ifo) for ifo in ['h1','l1','v1']] |
| |
| list | lalinference.bayespputils.calParams = calAmpParams + calPhaseParams |
| |
| list | lalinference.bayespputils.massParams = ['m1','m2','chirpmass','mchirp','mc','eta','q','massratio','asym_massratio','mtotal','mf','mf_evol','mf_nonevol'] |
| |
| list | lalinference.bayespputils.spinParamsPrec = ['a1','a2','phi1','theta1','phi2','theta2','costilt1','costilt2','costheta_jn','cosbeta','tilt1','tilt1_isco','tilt2','tilt2_isco','phi_jl','theta_jn','phi12','phi12_isco','af','af_evol','af_nonevol','afz','afz_evol','afz_nonevol'] |
| |
| list | lalinference.bayespputils.spinParamsAli = ['spin1','spin2','a1z','a2z'] |
| |
| list | lalinference.bayespputils.spinParamsEff = ['chi','effectivespin','chi_eff','chi_tot','chi_p'] |
| |
| list | lalinference.bayespputils.spinParams = spinParamsPrec+spinParamsEff+spinParamsAli |
| |
| list | lalinference.bayespputils.cosmoParam = ['m1_source','m2_source','mtotal_source','mc_source','redshift','mf_source','mf_source_evol','mf_source_nonevol','m1_source_maxldist','m2_source_maxldist','mtotal_source_maxldist','mc_source_maxldist','redshift_maxldist','mf_source_maxldist','mf_source_maxldist_evol','mf_source_maxldist_nonevol'] |
| |
| list | lalinference.bayespputils.ppEParams = ['ppEalpha','ppElowera','ppEupperA','ppEbeta','ppElowerb','ppEupperB','alphaPPE','aPPE','betaPPE','bPPE'] |
| |
| list | lalinference.bayespputils.tigerParams = ['dchi%i'%(i) for i in range(8)] + ['dchi%il'%(i) for i in [5,6] ] + ['dxi%d'%(i+1) for i in range(6)] + ['dalpha%i'%(i+1) for i in range(5)] + ['dbeta%i'%(i+1) for i in range(3)] + ['dsigma%i'%(i+1) for i in range(4)] + ['dipolecoeff'] + ['dchiminus%i'%(i) for i in [1,2]] + ['dchiMinus%i'%(i) for i in [1,2]] + ['db1','db2','db3','db4','dc1','dc2','dc4','dcl'] |
| |
| list | lalinference.bayespputils.qnmtestParams = ['domega220','dtau220','domega210','dtau210','domega330','dtau330','domega440','dtau440','domega550','dtau550'] |
| |
| list | lalinference.bayespputils.bransDickeParams = ['omegaBD','ScalarCharge1','ScalarCharge2'] |
| |
| list | lalinference.bayespputils.massiveGravitonParams = ['lambdaG'] |
| |
| list | lalinference.bayespputils.lorentzInvarianceViolationParams = ['log10lambda_a','lambda_a','log10lambda_eff','lambda_eff','log10livamp','liv_amp'] |
| |
| list | lalinference.bayespputils.tidalParams = ['lambda1','lambda2','lam_tilde','dlam_tilde','lambdat','dlambdat','lambdas','bluni'] |
| |
| list | lalinference.bayespputils.fourPiecePolyParams = ['logp1','gamma1','gamma2','gamma3'] |
| |
| list | lalinference.bayespputils.spectralParams = ['sdgamma0','sdgamma1','sdgamma2','sdgamma3'] |
| |
| list | lalinference.bayespputils.energyParams = ['e_rad', 'e_rad_evol', 'e_rad_nonevol', 'l_peak', 'l_peak_evol', 'l_peak_nonevol', 'e_rad_maxldist', 'e_rad_maxldist_evol', 'e_rad_maxldist_nonevol'] |
| |
| list | lalinference.bayespputils.spininducedquadParams = ['dquadmon1', 'dquadmon2', 'dquadmona', 'dquadmona'] |
| |
| tuple | lalinference.bayespputils.strongFieldParams |
| |
| list | lalinference.bayespputils.distParams = ['distance','distMPC','dist','distance_maxl'] |
| |
| list | lalinference.bayespputils.incParams = ['iota','inclination','cosiota'] |
| |
| list | lalinference.bayespputils.polParams = ['psi','polarisation','polarization'] |
| |
| list | lalinference.bayespputils.skyParams = ['ra','rightascension','declination','dec'] |
| |
| list | lalinference.bayespputils.phaseParams = ['phase', 'phi0','phase_maxl'] |
| |
| list | lalinference.bayespputils.timeParams = ['time','time_mean'] |
| |
| list | lalinference.bayespputils.endTimeParams = ['l1_end_time','h1_end_time','v1_end_time'] |
| |
| list | lalinference.bayespputils.statsParams = ['logprior','logl','deltalogl','deltaloglh1','deltalogll1','deltaloglv1','deltaloglh2','deltaloglg1'] |
| |
| list | lalinference.bayespputils.calibParams = ['calpha_l1','calpha_h1','calpha_v1','calamp_l1','calamp_h1','calamp_v1'] |
| |
| list | lalinference.bayespputils.confidenceLevels = [0.67,0.9,0.95,0.99] |
| | Greedy bin sizes for cbcBPP and confidence leves used for the greedy bin intervals. More...
|
| |
| dictionary | lalinference.bayespputils.greedyBinSizes = {'mc':0.025,'m1':0.1,'m2':0.1,'mass1':0.1,'mass2':0.1,'mtotal':0.1,'mc_source':0.025,'m1_source':0.1,'m2_source':0.1,'mtotal_source':0.1,'mc_source_maxldist':0.025,'m1_source_maxldist':0.1,'m2_source_maxldist':0.1,'mtotal_source_maxldist':0.1,'eta':0.001,'q':0.01,'asym_massratio':0.01,'iota':0.01,'cosiota':0.02,'time':1e-4,'time_mean':1e-4,'distance':1.0,'dist':1.0,'distance_maxl':1.0,'redshift':0.01,'redshift_maxldist':0.01,'mchirp':0.025,'chirpmass':0.025,'spin1':0.04,'spin2':0.04,'a1z':0.04,'a2z':0.04,'a1':0.02,'a2':0.02,'phi1':0.05,'phi2':0.05,'theta1':0.05,'theta2':0.05,'ra':0.05,'dec':0.05,'chi':0.05,'chi_eff':0.05,'chi_tot':0.05,'chi_p':0.05,'costilt1':0.02,'costilt2':0.02,'thatas':0.05,'costheta_jn':0.02,'beta':0.05,'omega':0.05,'cosbeta':0.02,'ppealpha':1.0,'ppebeta':1.0,'ppelowera':0.01,'ppelowerb':0.01,'ppeuppera':0.01,'ppeupperb':0.01,'polarisation':0.04,'rightascension':0.05,'declination':0.05,'massratio':0.001,'inclination':0.01,'phase':0.05,'tilt1':0.05,'tilt2':0.05,'phi_jl':0.05,'theta_jn':0.05,'phi12':0.05,'flow':1.0,'phase_maxl':0.05,'calamp_l1':0.01,'calamp_h1':0.01,'calamp_v1':0.01,'calpha_h1':0.01,'calpha_l1':0.01,'calpha_v1':0.01,'logdistance':0.1,'psi':0.1,'costheta_jn':0.1,'mf':0.1,'mf_evol':0.1,'mf_nonevol':0.1,'mf_source':0.1,'mf_source_evol':0.1,'mf_source_nonevol':0.1,'mf_source_maxldist':0.1,'mf_source_maxldist_evol':0.1,'mf_source_maxldist_nonevol':0.1,'af':0.02,'af_evol':0.02,'af_nonevol':0.02,'afz':0.02,'afz_evol':0.01,'afz_nonevol':0.01,'e_rad':0.1,'e_rad_evol':0.1,'e_rad_nonevol':0.1,'e_rad_maxldist':0.1,'e_rad_maxldist_evol':0.1,'e_rad_maxldist_nonevol':0.1,'l_peak':0.1,'l_peak_evol':0.1,'l_peak_nonevol':0.1} |
| |
| string | lalinference.bayespputils.xmlns = 'http://www.ivoa.net/xml/VOTable/v1.1' |
| |
| | lalinference.bayespputils.cred_level = lambda cl, x: np.sort(x, axis=0)[int(cl*len(x))] |
| |
| | lalinference.bayespputils.unrho |
| | when called by kdtree.operate will be used to calculate the density of each bin (sky area) More...
|
| |
| | lalinference.bayespputils.tabname |
| |
| | lalinference.bayespputils.intable |
| |
| | lalinference.bayespputils.tableElementName |
| |