idq.features¶
features.py supports the class representation of idq.features.FeatureVector
and idq.features.Quiver
, which are thin wrappers around numpy structured arrays.
- class idq.features.ColumnTransformer(transforms, default)[source]¶
manages transformations of columns on an individual feature/FeatureVector basis useful when the same transformation is applied to the same column from many channels
- class idq.features.DataChunk(features: Dict, columns: Tuple, start: int, end: int, segs: Optional[ligo.segments.__segments.segmentlist] = None, skip_filter: bool = True)[source]¶
- filter(channels=None, columns=None, segs=None, time='time', bounds=None)[source]¶
update segments and filters out data that don’t span segments NOTE: this requires knowledge of the “time” key within data
- class idq.features.DataTable(data=None, masked=False, names=None, dtype=None, meta=None, copy=True, rows=None, copy_indices=True, units=None, descriptions=None, **kwargs)[source]¶
- Row¶
alias of
FeatureVector
- class idq.features.DeltaTimeTransformer(time='time', default=-inf, default_delta_time=inf, **kwargs)[source]¶
extends column map specifically to transform raw timestamps to relative timestamps
- class idq.features.Downselect(default=-inf, **kwargs)[source]¶
an object that downselects a list of triggers to a prefered one, otherwise returning a default value
- class idq.features.DownselectLoudest(default=-inf, **kwargs)[source]¶
take the loudest thing within some time window if there is no trigger within the window, return None
- class idq.features.DownselectPointy(default=-inf, **kwargs)[source]¶
take the thing with the smallest pointy-poisson p-value
- class idq.features.FeatureVector(table, index)[source]¶
A feature vector representing a single row in a Dataset.
- class idq.features.Selector(channels: Tuple, time: str = 'time', downselector: Optional[idq.features.Downselect] = None, transformer: Optional[idq.features.ColumnTransformer] = None, bounds: dict = <factory>)[source]¶
- class idq.features.Whitener[source]¶
an object that manages whitening tables from quiver.vectorize remembers the xformations and serves as a utility for classifiers to map back and forth