bilby.gw.prior.UniformInComponentsChirpMass
- class bilby.gw.prior.UniformInComponentsChirpMass(minimum, maximum, name='chirp_mass', latex_label='$\\mathcal{M}$', unit=None, boundary=None)[source]
Bases:
PowerLaw
Prior distribution for chirp mass which is uniform in component masses.
This is useful when chirp mass and mass ratio are sampled while the prior is uniform in component masses.
\[p({\cal M}) \propto {\cal M}\]Notes
This prior is intended to be used in conjunction with the corresponding
bilby.gw.prior.UniformInComponentsMassRatio
.- __init__(minimum, maximum, name='chirp_mass', latex_label='$\\mathcal{M}$', unit=None, boundary=None)[source]
- Parameters:
- minimumfloat
The minimum of chirp mass
- maximumfloat
The maximum of chirp mass
- name: see superclass
- latex_label: see superclass
- unit: see superclass
- boundary: see superclass
- __call__()[source]
Overrides the __call__ special method. Calls the sample method.
- Returns:
- float: The return value of the sample method.
Methods
__init__
(minimum, maximum[, name, ...])cdf
(val)Generic method to calculate CDF, can be overwritten in subclass
from_json
(dct)from_repr
(string)Generate the prior from its __repr__
get_instantiation_dict
()is_in_prior_range
(val)Returns True if val is in the prior boundaries, zero otherwise
ln_prob
(val)Return the logarithmic prior probability of val
prob
(val)Return the prior probability of val
rescale
(val)'Rescale' a sample from the unit line element to the power-law prior.
sample
([size])Draw a sample from the prior
to_json
()Attributes
boundary
Returns True if the prior is fixed and should not be used in the sampler.
Latex label that can be used for plots.
If a unit is specified, returns a string of the latex label and unit
maximum
minimum
unit
width
- property is_fixed
Returns True if the prior is fixed and should not be used in the sampler. Does this by checking if this instance is an instance of DeltaFunction.
- Returns:
- bool: Whether it’s fixed or not!
- is_in_prior_range(val)[source]
Returns True if val is in the prior boundaries, zero otherwise
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan
- property latex_label
Latex label that can be used for plots.
Draws from a set of default labels if no label is given
- Returns:
- str: A latex representation for this prior
- property latex_label_with_unit
If a unit is specified, returns a string of the latex label and unit
- ln_prob(val)[source]
Return the logarithmic prior probability of val
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- float:
- prob(val)[source]
Return the prior probability of val
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- float: Prior probability of val