bilby.core.sampler.nessai.Nessai
- class bilby.core.sampler.nessai.Nessai(likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, skip_import_verification=False, injection_parameters=None, meta_data=None, result_class=None, likelihood_benchmark=False, soft_init=False, exit_code=130, npool=1, **kwargs)[source]
Bases:
NestedSampler
bilby wrapper of nessai (https://github.com/mj-will/nessai)
All positional and keyword arguments passed to run_sampler are propagated to nessai.flowsampler.FlowSampler
See the documentation for an explanation of the different kwargs.
Documentation: https://nessai.readthedocs.io/
- __init__(likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, skip_import_verification=False, injection_parameters=None, meta_data=None, result_class=None, likelihood_benchmark=False, soft_init=False, exit_code=130, npool=1, **kwargs)[source]
- __call__(*args, **kwargs)
Call self as a function.
Methods
__init__
(likelihood, priors[, outdir, ...])calc_likelihood_count
()check_draw
(theta[, warning])Checks if the draw will generate an infinite prior or likelihood
get_expected_outputs
([outdir, label])Get lists of the expected outputs directories and files.
get_initial_points_from_prior
([npoints])Method to draw a set of live points from the prior
Get the model for nessai.
Get the nested samples dataframe
Get the posterior weights for the nested samples
Get a random draw from the prior distribution
log_likelihood
(theta)Since some nested samplers don't call the log_prior method, evaluate the prior constraint here.
log_prior
(theta)prior_transform
(theta)Prior transform method that is passed into the external sampler.
Reorders the stored log-likelihood after they have been reweighted
run_sampler
(*args, **kwargs)A template method to run in subclasses
Split kwargs into configuration and run time kwargs
Update the result object.
Write the current state of the sampler
write_current_state_and_exit
([signum, frame])Overwrites the base class to make sure that
Nessai
terminates properly.Attributes
abbreviation
check_point_equiv_kwargs
list: List of parameters providing prior constraints
Default kwargs for nessai.
external_sampler_name
list: List of parameter keys that are not being sampled
hard_exit
dict: Container for the kwargs.
int: Number of dimensions of the search parameter space
npoints_equiv_kwargs
npool
npool_equiv_kwargs
List of kwargs used in the run method of
FlowSampler
sampler_name
sampling_seed_equiv_kwargs
Name of keyword argument for setting the sampling for the specific sampler.
list: List of parameter keys that are being sampled
walks_equiv_kwargs
- check_draw(theta, warning=True)[source]
Checks if the draw will generate an infinite prior or likelihood
Also catches the output of numpy.nan_to_num.
- Parameters:
- theta: array_like
Parameter values at which to evaluate likelihood
- warning: bool
Whether or not to print a warning
- Returns:
- bool, cube (nlive,
True if the likelihood and prior are finite, false otherwise
- property constraint_parameter_keys
list: List of parameters providing prior constraints
- property default_kwargs
Default kwargs for nessai.
Retrieves default values from nessai directly and then includes any bilby specific defaults. This avoids the need to update bilby when the defaults change or new kwargs are added to nessai.
Includes the following kwargs that are specific to bilby:
nessai_log_level
: allows setting the logging level in nessainessai_logging_stream
: allows setting the logging streamnessai_plot
: allows toggling the plotting in FlowSampler.run
- property fixed_parameter_keys
list: List of parameter keys that are not being sampled
- classmethod get_expected_outputs(outdir=None, label=None)[source]
Get lists of the expected outputs directories and files.
These are used by
bilby_pipe
when transferring files via HTCondor.- Parameters:
- outdirstr
The output directory.
- labelstr
The label for the run.
- Returns:
- list
List of file names. This will be empty for nessai.
- list
List of directory names.
- get_initial_points_from_prior(npoints=1)[source]
Method to draw a set of live points from the prior
This iterates over draws from the prior until all the samples have a finite prior and likelihood (relevant for constrained priors).
- Parameters:
- npoints: int
The number of values to return
- Returns:
- unit_cube, parameters, likelihood: tuple of array_like
unit_cube (nlive, ndim) is an array of the prior samples from the unit cube, parameters (nlive, ndim) is the unit_cube array transformed to the target space, while likelihood (nlive) are the likelihood evaluations.
- get_random_draw_from_prior()[source]
Get a random draw from the prior distribution
- Returns:
- draw: array_like
An ndim-length array of values drawn from the prior. Parameters with delta-function (or fixed) priors are not returned
- property kwargs
dict: Container for the kwargs. Has more sophisticated logic in subclasses
- log_likelihood(theta)[source]
Since some nested samplers don’t call the log_prior method, evaluate the prior constraint here.
- Parameters:
- theta: array_like
Parameter values at which to evaluate likelihood
- Returns:
- float: log_likelihood
- log_prior(theta)[source]
- Parameters:
- theta: list
List of sampled values on a unit interval
- Returns:
- float: Joint ln prior probability of theta
- property ndim
int: Number of dimensions of the search parameter space
- prior_transform(theta)[source]
Prior transform method that is passed into the external sampler.
- Parameters:
- theta: list
List of sampled values on a unit interval
- Returns:
- list: Properly rescaled sampled values
- static reorder_loglikelihoods(unsorted_loglikelihoods, unsorted_samples, sorted_samples)[source]
Reorders the stored log-likelihood after they have been reweighted
This creates a sorting index by matching the reweights result.samples against the raw samples, then uses this index to sort the loglikelihoods
- Parameters:
- sorted_samples, unsorted_samples: array-like
Sorted and unsorted values of the samples. These should be of the same shape and contain the same sample values, but in different orders
- unsorted_loglikelihoods: array-like
The loglikelihoods corresponding to the unsorted_samples
- Returns:
- sorted_loglikelihoods: array-like
The loglikelihoods reordered to match that of the sorted_samples
- property run_kwargs_list
List of kwargs used in the run method of
FlowSampler
- sampling_seed_key = 'seed'
Name of keyword argument for setting the sampling for the specific sampler. If a specific sampler does not have a sampling seed option, then it should be left as None.
- property search_parameter_keys
list: List of parameter keys that are being sampled