bilby.core.result.make_pp_plot
- bilby.core.result.make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0.95, 0.997], lines=None, legend_fontsize='x-small', keys=None, title=True, confidence_interval_alpha=0.1, weight_list=None, **kwargs)[source]
Make a P-P plot for a set of runs with injected signals.
- Parameters:
- results: list
A list of Result objects, each of these should have injected_parameters
- filename: str, optional
The name of the file to save, the default is “outdir/pp.png”
- save: bool, optional
Whether to save the file, default=True
- confidence_interval: (float, list), optional
The confidence interval to be plotted, defaulting to 1-2-3 sigma
- lines: list
If given, a list of matplotlib line formats to use, must be greater than the number of parameters.
- legend_fontsize: float
The font size for the legend
- keys: list
A list of keys to use, if None defaults to search_parameter_keys
- title: bool
Whether to add the number of results and total p-value as a plot title
- confidence_interval_alpha: float, list, optional
The transparency for the background condifence interval
- weight_list: list, optional
List of the weight arrays for each set of posterior samples.
- kwargs:
Additional kwargs to pass to matplotlib.pyplot.plot
- Returns:
- fig, pvals:
matplotlib figure and a NamedTuple with attributes combined_pvalue, pvalues, and names.