bilby.core.prior.joint.MultivariateGaussian
- class bilby.core.prior.joint.MultivariateGaussian(dist, name=None, latex_label=None, unit=None)[source]
Bases:
JointPrior
- __init__(dist, name=None, latex_label=None, unit=None)[source]
This defines the single parameter Prior object for parameters that belong to a JointPriorDist
- Parameters:
- dist: ChildClass of BaseJointPriorDist
The shared JointPriorDistribution that this parameter belongs to
- name: str
Name of this parameter. Must be contained in dist.names
- latex_label: str
See superclass
- unit: str
See superclass
- __call__()[source]
Overrides the __call__ special method. Calls the sample method.
- Returns:
- float: The return value of the sample method.
Methods
__init__
(dist[, name, latex_label, unit])This defines the single parameter Prior object for parameters that belong to a JointPriorDist
cdf
(val)Generic method to calculate CDF, can be overwritten in subclass
from_json
(dct)from_repr
(string)Generate the prior from its __repr__
get_instantiation_dict
()is_in_prior_range
(val)Returns True if val is in the prior boundaries, zero otherwise
ln_prob
(val)Return the natural logarithm of the prior probability.
prob
(val)Return the prior probability of val
rescale
(val, **kwargs)Scale a unit hypercube sample to the prior.
sample
([size])Draw a sample from the prior.
to_json
()Attributes
boundary
Returns True if the prior is fixed and should not be used in the sampler.
Latex label that can be used for plots.
If a unit is specified, returns a string of the latex label and unit
maximum
minimum
unit
width
- property is_fixed
Returns True if the prior is fixed and should not be used in the sampler. Does this by checking if this instance is an instance of DeltaFunction.
- Returns:
- bool: Whether it’s fixed or not!
- is_in_prior_range(val)[source]
Returns True if val is in the prior boundaries, zero otherwise
- Parameters:
- val: Union[float, int, array_like]
- Returns:
- np.nan
- property latex_label
Latex label that can be used for plots.
Draws from a set of default labels if no label is given
- Returns:
- str: A latex representation for this prior
- property latex_label_with_unit
If a unit is specified, returns a string of the latex label and unit
- ln_prob(val)[source]
Return the natural logarithm of the prior probability. Note that this will not be correctly normalised if there are bounds on the distribution.
- Parameters:
- val: array_like
value to evaluate the prior log-prob at
- Returns
- =======
- float:
the logp value for the prior at given sample
- prob(val)[source]
Return the prior probability of val
- Parameters:
- val: array_like
value to evaluate the prior prob at
- Returns:
- float:
the p value for the prior at given sample