================= SamplesDict class ================= `pesummary`'s gw package provides extra functionality to the core `pesummary.utils.samples_dict.SamplesDict` class. For details about initializing the `SamplesDict` class and using the core `SamplesDict` properties, see the `core SamplesDict docs <../core/SamplesDict.html>`_. Parameter descriptions ---------------------- `pesummary` provides a set of parameter descriptions for most gravitational wave specific parameters (see `here <./parameters.html>`_). You can access these descriptions directly from the `SamplesDict` class, .. code-block:: python >>> from pesummary.utils.samples_dict import SamplesDict >>> samplesdict = SamplesDict.from_file("path_to_file.hdf5") >>> parameters = samplesdict.keys() >>> print(parameters[0]) 'mass_1' >>> print(parameters[0].description) the detector-frame (redshifted) mass of the heavier object Source classifications ---------------------- `pesummary` provides wrappers for the `PEPredicates <https://git.ligo.org/will-farr/pepredicates>`_ and `ligo.em-bright <https://pypi.org/project/ligo.em-bright/`_ packages to calculate classification probabilities from the samples. We may calculate the classification probabilities with, .. code-block:: python >>> from pesummary.utils.samples_dict import SamplesDict >>> samplesdict = SamplesDict.from_file("path_to_file.hdf5") >>> samplesdict.classification() {'default': {'BNS': 0.0, 'NSBH': 0.0, 'BBH': 1.0, 'MassGap': 0.0, 'HasNS': 0.0, 'HasRemnant': 1.0}, 'population': {'BNS': 0.0, 'NSBH': 0.0, 'BBH': 1.0, 'MassGap': 0.0, 'HasNS': 0.0, 'HasRemnant': 1.0}} Where the `default` classification is generated by using the samples directly, and the `population` classification is generated by reweighing the samples to a population based prior. For more details see the `pesummary.gw.classification <./classification.html>`_ module.