=========== Array class =========== `pesummary` handles a set of marginalized posterior samples through a custom `Array` class. This `Array` class is inherited from the `numpy.ndarray` class and includes extra properties to make it easier to return key information. Initializing the Array class ---------------------------- The `Array` class is initalized with the following: .. code-block:: python >>> from pesummary.utils.array import Array >>> samples = [1,2,3,4,5,6] >>> array = Array(samples) Using the Array properties -------------------------- Below we show some of the useful properties of the `Array` class. For full details see the doc string, .. code-block:: python >>> array.minimum Array(1) >>> array.maximum Array(6) >>> array.average(type="mean") Array(3.5) >>> array.average(type="median") Array(3.5) >>> array.key_data {'mean': 3.5, 'median': 3.5, 'std': 1.707825127659933, 'maxL': None, 'maxP': None, '5th percentile': 1.25, '95th percentile': 5.75} Using the Array functions ------------------------- Below we show some of the useful functions of the `Array` class, .. code-block:: python >>> array.confidence_interval(percentile=[5, 95]) array([1.25, 5.75]) >>> array.confidence_interval(percentile=[45, 55]) array([3.25, 3.75]) >>>