Source code for pesummary.gw.conversions.cosmology

# Licensed under an MIT style license -- see LICENSE.md

import numpy as np
from pesummary.gw.cosmology import get_cosmology
from pesummary.utils.utils import logger
from pesummary.utils.decorators import array_input

__author__ = ["Charlie Hoy <charlie.hoy@ligo.org>"]

try:
    from astropy.cosmology import z_at_value
    import astropy.units as u
except ImportError:
    pass


def _wrapper_for_z_from_dL_exact(args):
    """Wrapper function for _z_from_dL_exact for a pool of workers

    Parameters
    ----------
    args: tuple
        All args passed to _z_from_dL_exact
    """
    return _z_from_dL_exact(*args)


def _z_from_dL_exact(luminosity_distance, cosmology):
    """Return the redshift given samples for the luminosity distance for a
    given cosmology

    Parameters
    ----------
    luminosity_distance: float/np.array
        luminosity distance samples
    cosmology: astropy.cosmology.LambdaCDM
        the cosmology to use for conversions
    """
    _z = z_at_value(
        cosmology.luminosity_distance, luminosity_distance * u.Mpc
    )
    try:
        return _z.value
    except AttributeError:
        # astropy < 5.0
        return _z


[docs] @array_input(ignore_kwargs=["cosmology", "multi_process"]) def z_from_dL_exact(luminosity_distance, cosmology="Planck15", multi_process=1): """Return the redshift given samples for the luminosity distance """ import multiprocessing from pesummary.utils.utils import iterator logger.warning("Estimating the exact redshift for every luminosity " "distance. This may take a few minutes.") cosmo = get_cosmology(cosmology) args = np.array( [luminosity_distance, [cosmo] * len(luminosity_distance)], dtype=object ).T with multiprocessing.Pool(multi_process) as pool: z = np.array( list( iterator( pool.imap(_wrapper_for_z_from_dL_exact, args), tqdm=True, desc="Calculating redshift", logger=logger, total=len(luminosity_distance) ) ) ) return z
[docs] @array_input(ignore_kwargs=["N", "cosmology"]) def z_from_dL_approx( luminosity_distance, N=100, cosmology="Planck15", **kwargs ): """Return the approximate redshift given samples for the luminosity distance. This technique uses interpolation to estimate the redshift """ logger.warning("The redshift is being approximated using interpolation. " "Bear in mind that this does introduce a small error.") cosmo = get_cosmology(cosmology) d_min = np.min(luminosity_distance) d_max = np.max(luminosity_distance) zmin = _z_from_dL_exact(d_min, cosmo) zmax = _z_from_dL_exact(d_max, cosmo) zgrid = np.logspace(np.log10(zmin), np.log10(zmax), N) Dgrid = cosmo.luminosity_distance(zgrid).value zvals = np.interp(luminosity_distance, Dgrid, zgrid) return zvals
[docs] @array_input(ignore_kwargs=["cosmology"]) def dL_from_z(redshift, cosmology="Planck15"): """Return the luminosity distance given samples for the redshift """ cosmo = get_cosmology(cosmology) return cosmo.luminosity_distance(redshift).value
[docs] @array_input(ignore_kwargs=["cosmology"]) def comoving_distance_from_z(redshift, cosmology="Planck15"): """Return the comoving distance given samples for the redshift """ cosmo = get_cosmology(cosmology) return cosmo.comoving_distance(redshift).value
def _source_from_detector(parameter, z): """Return the source-frame parameter given samples for the detector-frame parameter and the redshift """ return parameter / (1. + z) def _detector_from_source(parameter, z): """Return the detector-frame parameter given samples for the source-frame parameter and the redshift """ return parameter * (1. + z)
[docs] @array_input() def m1_source_from_m1_z(mass_1, z): """Return the source-frame primary mass given samples for the detector-frame primary mass and the redshift """ return _source_from_detector(mass_1, z)
[docs] @array_input() def m1_from_m1_source_z(mass_1_source, z): """Return the detector-frame primary mass given samples for the source-frame primary mass and the redshift """ return _detector_from_source(mass_1_source, z)
[docs] @array_input() def m2_source_from_m2_z(mass_2, z): """Return the source-frame secondary mass given samples for the detector-frame secondary mass and the redshift """ return _source_from_detector(mass_2, z)
[docs] @array_input() def m2_from_m2_source_z(mass_2_source, z): """Return the detector-frame secondary mass given samples for the source-frame secondary mass and the redshift """ return _detector_from_source(mass_2_source, z)
[docs] @array_input() def m_total_source_from_mtotal_z(total_mass, z): """Return the source-frame total mass of the binary given samples for the detector-frame total mass and redshift """ return _source_from_detector(total_mass, z)
[docs] @array_input() def mtotal_from_mtotal_source_z(total_mass_source, z): """Return the detector-frame total mass of the binary given samples for the source-frame total mass and redshift """ return _detector_from_source(total_mass_source, z)
[docs] @array_input() def mchirp_source_from_mchirp_z(mchirp, z): """Return the source-frame chirp mass of the binary given samples for detector-frame chirp mass and redshift """ return _source_from_detector(mchirp, z)
[docs] @array_input() def mchirp_from_mchirp_source_z(mchirp_source, z): """Return the detector-frame chirp mass of the binary given samples for the source-frame chirp mass and redshift """ return _detector_from_source(mchirp_source, z)
class Redshift(object): exact = z_from_dL_exact approx = z_from_dL_approx