========================= Plotting from a meta file ========================= Here we will go through step by step how to generate plots directly from the `pesummary` meta file. This tutorial will utilize the plotting methods in the `pesummary.utils.samples_dict.SamplesDict <../SamplesDict.html>`_ class and the `pesummary.utils.samples_dict.MultiAnalysisSamplesDict <../MultiAnalysisSamplesDict.html>`_ class. Firstly, let us make a meta file. .. code-block:: python >>> from pesummary.io import write >>> import numpy as np >>> parameters = ["a", "b", "c", "d"] >>> samples = np.array([np.random.normal(10, np.random.random(), 1000) for _ in range(len(parameters))]).T >>> write(parameters, samples, outdir="./", label="one", filename="example.h5", file_format="pesummary") Now, lets make several plots showing the data. The list of available plots can be displayed by running: .. code-block:: python >>> from pesummary.io import read >>> f = read("example.h5") >>> samples = f.samples_dict >>> type(samples) <class 'pesummary.utils.samples_dict.MultiAnalysisSamplesDict'> >>> samples.available_plots Now, lets make a histogram showing the posterior distribution for `a`: .. code-block:: python >>> fig = samples.plot("a", type="hist", kde=True) >>> fig.show() .. image:: ./examples/MultiAnalysisHistogram.png Alternatively, if you prefer to see this displayed as a violin plot, .. code-block:: python >>> fig = samples.plot("a", type="violin", palette="colorblind", latex_labels={"a": "a"}) >>> fig.show() .. image:: ./examples/violin.png To see how the prior can also be added to this plot see `Violin plots <../../gw/violin.html>`_ Alternatively, a corner plot can be generated for a subset of parameters: .. code-block:: python >>> fig = samples.plot(type="corner", parameters=["a", "b", "c"]) >>> fig.show() .. image:: ./examples/MultiAnalysisCorner.png A triangle plot showing the posterior distributions for `a` and `b` can also be generated with: .. code-block:: python >>> fig, _, _, _ = samples.plot(["a", "b"], type="triangle", smooth=4, fill_alpha=0.2) >>> fig.show() .. image:: ./examples/MultiAnalysisTriangle.png Or the reverse triangle plot for `a` and `b` can be generated with: .. code-block:: python >>> fig, _, _, _ = samples.plot(["a", "b"], type="reverse_triangle", smooth=4, fill_alpha=0.2) >>> fig.show() .. image:: ./examples/MultiAnalysisReverseTriangle.png All of these plots are generated with the `MultiAnalysisSamplesDict` class. Of course, the `SamplesDict` class can also be used for plotting: .. code-block:: python >>> one = samples["one"] >>> fig = one.plot("a", type="hist", kde=True) >>> fig.show() .. image:: ./examples/Histogram.png Which shows additional information.