bilby_pipe.data_analysis ======================== .. py:module:: bilby_pipe.data_analysis .. autoapi-nested-parse:: Script to perform data analysis .. !! processed by numpydoc !! Classes ------- .. autoapisummary:: bilby_pipe.data_analysis.DataAnalysisInput Functions --------- .. autoapisummary:: bilby_pipe.data_analysis.sighandler bilby_pipe.data_analysis.create_analysis_parser bilby_pipe.data_analysis.main bilby_pipe.data_analysis.reweight Module Contents --------------- .. py:function:: sighandler(signum, frame) .. py:class:: DataAnalysisInput(args, unknown_args, test=False) Bases: :py:obj:`bilby_pipe.input.Input` Handles user-input for the data analysis script :Parameters: **parser: BilbyArgParser, optional** The parser containing the command line / ini file inputs **args_list: list, optional** A list of the arguments to parse. Defaults to `sys.argv[1:]` .. !! processed by numpydoc !! .. py:attribute:: meta_data .. py:attribute:: result :value: None .. py:attribute:: ini .. py:attribute:: scheduler .. py:attribute:: periodic_restart_time .. py:attribute:: request_cpus .. py:attribute:: run_local .. py:attribute:: outdir The path to the directory where output will be stored .. !! processed by numpydoc !! .. py:attribute:: label .. py:attribute:: result_format .. py:attribute:: data_dump_file .. py:attribute:: detectors A list of the detectors to include, e.g., ['H1', 'L1'] .. !! processed by numpydoc !! .. py:attribute:: sampler .. py:attribute:: sampler_kwargs .. py:property:: sampling_seed .. py:attribute:: sampling_frequency .. py:attribute:: minimum_frequency The minimum frequency If a per-detector dictionary is given, this will return the minimum frequency value. To access the dictionary, see self.minimum_frequency_dict .. !! processed by numpydoc !! .. py:attribute:: maximum_frequency The maximum frequency If a per-detector dictionary is given, this will return the maximum frequency value. To access the dictionary, see self.maximum_frequency_dict .. !! processed by numpydoc !! .. py:attribute:: reference_frequency .. py:attribute:: waveform_generator_class .. py:attribute:: waveform_approximant .. py:attribute:: catch_waveform_errors .. py:attribute:: pn_spin_order .. py:attribute:: pn_tidal_order .. py:attribute:: pn_phase_order .. py:attribute:: pn_amplitude_order .. py:attribute:: mode_array .. py:attribute:: waveform_arguments_dict .. py:attribute:: numerical_relativity_file .. py:attribute:: frequency_domain_source_model String of which frequency domain source model to use .. !! processed by numpydoc !! .. py:attribute:: conversion_function .. py:attribute:: generation_function .. py:attribute:: likelihood_type .. py:attribute:: reference_frame .. py:attribute:: time_reference .. py:attribute:: extra_likelihood_kwargs .. py:attribute:: enforce_signal_duration .. py:attribute:: roq_folder .. py:attribute:: roq_scale_factor .. py:attribute:: calibration_model .. py:attribute:: spline_calibration_envelope_dict .. py:attribute:: spline_calibration_amplitude_uncertainty_dict .. py:attribute:: spline_calibration_phase_uncertainty_dict .. py:attribute:: spline_calibration_nodes .. py:attribute:: calibration_prior_boundary .. py:attribute:: distance_marginalization .. py:attribute:: distance_marginalization_lookup_table :value: None .. py:attribute:: phase_marginalization .. py:attribute:: time_marginalization .. py:attribute:: jitter_time .. py:attribute:: calibration_marginalization .. py:attribute:: calibration_lookup_table .. py:attribute:: number_of_response_curves .. py:property:: interferometers .. py:method:: print_detector_information(interferometers) :staticmethod: .. py:property:: data_dump .. py:method:: _load_data_dump() .. py:property:: result_class The bilby result class to store results in .. !! processed by numpydoc !! .. py:property:: result_directory The path to the directory where result output will be stored .. !! processed by numpydoc !! .. py:method:: get_likelihood_and_priors() Read in the likelihood and prior from the data dump This reads in the data dump values and reconstructs the likelihood and priors. Note, care must be taken to use the "search_priors" which differ from the true prior when using marginalization :Returns: likelihood, priors The bilby likelihood and priors .. !! processed by numpydoc !! .. py:method:: run_sampler() .. py:method:: get_likelihood_and_priors_for_reweighting() .. py:method:: reweight_result() .. py:function:: create_analysis_parser() Data analysis parser creation .. !! processed by numpydoc !! .. py:function:: main() Data analysis main logic .. !! processed by numpydoc !! .. py:function:: reweight()